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abstract As part of the Atlas project, this dissertation aims to identify the navigable
limits of the road by analyzing the density of accumulated point clouds,
obtained through laser readings from a SICK LD-MRS sensor. This sensor,
installed in front of the AtlasCar2, has the purpose of identifying obstacles
at road level and from it the creation of occupation grids that delimit the
navigable space of the vehicle is proposed. First, the point cloud density
is converted into an occupancy density grid, normalized in each frame in
relation to the maximum density. Edge detection algorithms and gradient
filters are subsequently applied to the density grid, in order to detect patterns
that match sudden changes in density, both positive and negative. To these
grids are applied thresholds in order to remove irrelevant information. Finally,
a methodology for quantitative evaluation of algorithms was also developed,
using KML files to define road boundaries and, relying on the accuracy of
the GPS data obtained, comparing the actual navigable space with the one
obtained by the methodology for detection of road boundaries and thus
evaluating the performance of the work developed. In this work, the results
of the different algorithms are presented, as well as several tests taking into
account the influence of grid resolution, car speed, among others. In general,
the work developed meets the initially proposed objectives, being able to
detect both positive and negative obstacles and being minimally robust to
speed and road conditions.
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de Pontos; Densidade; ROS; Gradiente; Deteção de arestas

resumo No âmbito do projeto Atlas, esta dissertação prevê a identificação dos limites
navegáveis da estrada através da análise da densidade da acumulaçao de
nuvens de pontos, obtidas através de leituras laser provenientes de um
sensor SICK LD-MRS. Este sensor, instalado na frente do AtlasCar2, tem
como propósito a identificação de obstáculos ao nível da estrada e a partir
dos seus dados prevê-se a criação de grelhas de ocupação que delimitem
o espaço navegável do veículo. Em primeiro lugar, a densidade da nuvem
de pontos é transformada numa grelha de densidade normalizada em cada
frame em relação à densidade máxima, à qual posteriormente são aplicados
algoritmos de deteção de arestas e filtros de gradiente com o objetivo de
detetar padrões que correspondam a mudanças súbitas de densidade, tanto
positivas como negativas. A estas grelhas são aplicados limiares de forma
a eliminar informação irrelevante. Por fim, foi desenvolvida também uma
metodologia de avaliação quantitativa dos algoritmos, usando ficheiros KML
para deliniar limites da estrada e, contanto com a precisão dos dados de GPS
obtidos, comparar o espaço navegável real com o obtido pela metodologia de
deteção de limites de estrada e assim avaliar o desempenho dos algoritmos
desenvolvidos. Neste trabalho são apresentados resultados dos diferentes
algoritmos, bem como diversos testes tendo em conta a influência da resolução
de grelha, velocidade do carro, entre outros. O trabalho desenvovido cumpre
os objetivos propostos inicialmente, sendo capaz de detetar ambos obstáculos
positivos e negativos e sendo minimamente robusto a velocidade e condições
de estrada.
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Chapter 1

Introduction

In today’s world, there is a constant search for speed, autonomy, and efficiency. People
incessantly demand solutions and technologies that give the possibility to upgrade their
lifestyle and to save them time. In that line, the development of Autonomous Driving
(AD) is growing at high speed and is one of the most studied topics and with faster
development in the automobile industry at the present time.

AD is a complex combination of various components that can be defined as systems
where perception and detection, decision making, and the manipulation of the automobile
are performed by electronics and machinery, via Artifitial Intelligence (AI), instead of
humans. According to SAE International, there are 5 levels to define the degree of AD of
a vehicle [8]:

1. Level 0: No autonomy

2. Level 1: Driver Assistance

3. Level 2: Partial Automation

4. Level 3: Conditional Automation

5. Level 4: High Automation

6. Level 5: Full Automation

One of the first and most important fields of AD development is the perception and
detection of road, that begins immediately at level 1, where classical control elements are
assisting the driver in speed control and steering. Yet, to determine the navigable road
limits, that is, the limits where it is safe for the vehicle to move is not an objective task
and requires complex algorithms that guaranty of safety at every moment.

The proposed here is to find a solution to these problems with the usage of a 4 layers
3D Light Detection And Ranging (LIDAR) mounted on the front of a car, close to the
ground. LIDAR sensors measure the distance to the closest object and with them, it is
possible to withdraw a point cloud with three-dimensional points corresponding to the
intersection of laser beams with the objects ahead.

1



2 1.Introduction

1.1 Background - Atlas Project

The theme of this dissertation appears in the context of the Atlas project. This project
was created by the Group of Automation and Robotics at Laboratory for Automation and
Robotics (LAR), on the Department of Mechanical Engineering of the University of Aveiro
in 2003. The main focus of this project was allowing the development of advanced sensing
and active systems designed for implementation in automobiles and similar platforms [4].

In early years, the Atlas Project was based on mobile autonomous robots (Figure 1.1),
competing in several robotics competitions and winning multiple awards.

Figure 1.1: Atlascar 2010 and AtlasMV.

Later on, a Ford Escort model was equipped with several sensors and the AtlasCar
emerged (Figure 1.2), constituting a prototype for research on Advanced Driver’s Assist-
ance Systems (ADAS) [4]. AtlasCar was able to perceive its surroundings [3,13] and react
accordingly using multiple actuators to move its mechanical components [20].

Figure 1.2: The first AtlasCar.

D. Rato Master Degree



1.Introduction 3

After severe modifications and years of wear, the AtlasCar was no longer suitable
to the project’s needs and to the evolution of technology. The project was reborn with
the arrival of the AtlasCar2 in 2015 (Figure 1.3). This new prototype is a Mitsubishi
i-MiEV and brings a new world of possibilities to the project. Taking into account that
it is electric and doesn’t need gear changing, it makes the autonomous control potentially
easier and allows gathering power directly from the batteries.

Figure 1.3: AtlasCar2.

1.2 Problem Description

With the growing development of AD, road detection and perception techniques are
continuously being studied and perfected.

To achieve the goal of a fully functional prototype in ADAS, several studies were
developed in previous years under the Atlas Project to find the navigable road limits
hopefully allowing for navigation algorithms to know where the car can and cannot go.

In the previous AtlasCar, the accumulation of laser readings with the car movement
proved to produced good results in real time road limits detection/reconstruction ahead
of the car [23]. Laser readings can be converted into point clouds to which algorithms are
applied, resulting in the identification of road curbs or similar obstacles at road level.

In that line, the general problem was to positively identify road limits, by the
identification of obstacles like road curbs through the analysis of accumulated point cloud
density. The road limits will be evaluated with the concept of navigable space, defined
as the space within road limits, where the car can, allegedly, navigate with safety. To

D. Rato Master Degree



4 1.Introduction

accomplish that, a SICK LDMRS 4-Layer LIDAR was mounted on the front of the car.
The advantage of placing the sensor in front of the car, unlike most solutions in road
detection that use 360º LIDARs on top of the car, is to focus more in objects at road
level and to have a detailed perspective near the ground and not a general vision of the
road with bigger surroundings that most times don’t affect driving. In this way, road
curbs, holes, and similar obstacles are identified with more detail.

Although some work was developed by T. Marques by filtering only high-density
points in [12], the found solution was not robust enough and didn’t produce the expected
results in many situations. The focus of this dissertation is to improve the solution to
work in all situations.

The general idea now proposed is, not only to take advantage of point cloud density
but also of the density gradient as an edge detection tool and other edge detection filters
like Sobel and Canny to identify density changes that usually define obstacles. This
technique is a step ahead of density analysis taking into account that it considers both
positive and negative variations of density, allowing to also identify negative obstacles.

Also planned is the development of a tool that in a semi-automated way evaluates the
performance of the algorithms and the quality of the detected road limits.

1.3 Objectives

The main goal of this dissertation is to achieve real-time road detection, identifying
obstacles at road level with the possibility of making decisions instantaneously. To meet
this, data will be gathered from a 3D LIDAR and the innovating concept is to take
advantage of the car movement to reconstruct the road directly ahead of the car. Also, to
complement T. Marques’s work ( [12]), identify low curbs and inverted curbs is a priority.

Regarding the detection of road limits, the focus is to develop a robust algorithm,
independent from the car velocity, orientation and road conditions. To this end, the
influence of several factors in the achieved results was tested and modifications made to
optimize the parameters to the best results possible. Different edge detection techniques
were also implemented to evaluate which one would be most appropriate in the situation.

Considering this, the development of a tool to quantitatively evaluate the performance
of an algorithm is also an important task to achieve, not only to compare algorithms
between them and optimize the algorithm’s parameters but also to evaluate the general
performance of road detection. The objective here is to develop an automated program
that requires the user minimal effort and automatically performs and exports calculations
ready to insert in a data sheet.

Finally, this works also assumes the integration and testing of the developed methodo-
logies in real time on board of the AtlasCar2.

Briefly, the purpose of this work is to:

• Develop a robust solution for road detection

• Test and integrate the solution onboard of the AtlasCar2

• Develop a methodology to perform quantitative evaluation of road limits.
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1.4 Document Structure

This document is formed by 7 chapters:

• Chapter 1, this present one, is the introduction. In this chapter, the goal was to
contextualize the problem and background and to establish goals to achieve at the
end of the work;

• Chapter 2 describes the related work both at the University of Aveiro and at other
institutions;

• Chapter 3 explains the used infrastructure, both hardware and software, describing
features of the several sensors installed in the AtlasCar2 and the architecture of the
developed Robot Operating System (ROS) packages;

• Chapter 4 describes the methodology used to identify road limits and the navigable
space;

• Chapter 5 defines the developed quantitative evaluation methodology and the
integration with Google Earth;

• Chapter 6 discusses the experimental work and the influence of several external and
internal factors in the performance of the algorithms;

• Chapter 7 presents a conclusion to the work described in this thesis, globally evalu-
ating the results and discussing the future work that may improve the methodology
developed.
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Chapter 2

Related Work

As mentioned before, this thematic is studied by many people around the world and there
are many solutions and different methodologies to overcome the problem. Some of the
existing solutions will be described in this chapter.

When it comes to road detection and identifying the navigable road limits, there are
clearly two very different approaches: camera-based methods and LIDAR-based methods.
The first one is very influenced by external factors as weather conditions, etc., yet more
inclusive, as the second one represents a more robust system but more difficult to work
with. The ideal solution would be to incorporate both techniques and to take advantage
of each one’s strengths.

2.1 Detection of Road Limits

2.1.1 Work Developed at the University of Aveiro

Following the study done in previous master’s thesis at the University of Aveiro in road
detection using LIDAR, the majority of the work was developed by Tiago Marques in [12].

T. Marques placed the LIDAR in the front of the car, pointing to the ground, with
the goal of scanning obstacles at road level and define the road limits by the detection
of road curbs. The advantage of placing the sensor close to the ground is the possibility
to focus only on obstacles and objects close to the ground, which is the most important
feature in road limits definition.

This work takes advantage of the car movement to accumulate LIDAR scannings and
obtain an accumulated point cloud. To this cloud, an algorithm is applied that scans
each point and removes it if there are not enough neighbor points in a predefined radius.
What this means is that it is only considered a road limit a place with high point density.

In his work, T. Marques presents two types of algorithms: one static and one dynamic,
where the parameters change according to the car velocity. The last one presents more
reliable results, yet it still has problems with not well-defined road curbs and mainly when
there is an inverted road curb profile, meaning negative obstacles. This algorithm also
presents problems with sudden changes in velocity and direction, which influences the roll
and pitch of the car. This occurrence changes the distance from the sensor to the ground
and also the inclination of it, which can result in very high or very low accumulation of
points, depending on the situation.

For example, when the car is accelerating, the pitch of the vehicle increases and the
sensor changes orientation too, making the LIDAR readings further from the car and
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8 2.Related Work

more apart, creating a low-density cloud, resulting in less information to analyze.
On the contrary, in deceleration the pitch decreases and the point cloud becomes closer

to the ground with much higher density, which can be misleading and falsely identified as
a curb.

Also, the changing of direction can create a bigger concentration of point in one side
of the road, misleading the algorithms into thinking it is a road curb.

These little nuances provoke constant changes of density profiles and consequently of
information which difficult the development of an algorithm that works for every case.
To create a comprehensive solution is one of the most difficult challenges in improving T.
Marques’ algorithm.

2.1.2 Other Work

When it comes to road limits or curb detection using LIDAR there are many different
approaches. Contrary to the used solution, most methodologies take advantage of
360°LIDAR on top of the car, like [27], [19], [9] and [26], allowing to detect higher objects
like trees and other cars. However, creating less definition in ground level objects.

Many methods also take advantage of elevation profiles, by filtering objects according
to their elevation difference and grouping the ones with similar elevations.

For example, in [6], a prediction method is used to find the height difference between
two points and create an elevation map with the predicted measures. If all the points are
on the ground, ∆H is 0, if not, there will be a difference of heights.

In Figure 2.1, points A, B, and C are obtained by three adjacent beams in the same
circular direction. With equation 2.1, the difference of heights between each point it is
calculated, considering a linear regression between point A and B and the height of C in
the continuation of the calculated line.

∆H = ZC − ZB − (ZB − ZA) ∗ dBC

dAB
(2.1)

Figure 2.1: Methodology for curb detection with height difference prediction.

Also with a 360° 3D LIDAR, Zhang et al. in [27] use a sliding beam method for road
segmentation and a search based method applied to detect the curbs in each frame.
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The sliding beam method contains two sections: one bottom layer beam model that
allows to find the beam angles, that represent the road direction in the current location
of the vehicle in a beam zone inside the region of interest, and a top layer beam model,
that allows to build segments of road ahead of the vehicle. After this, spatial features of
curbs are defined and extracted, the features’ thresholds are defined and the search based
method is applied to detect curbs in each segment of the road.

For example figure 2.2, point A corresponds to a curb and point B to the road surface.
For each point the following parameters will be calculated:

1. Horizontal distance between two adjacent points (δxy in Fig. 2.2)

2. Vertical distance between two adjacent (δz in Fig. 2.2)

3. Angle between two vectors originating from the same point (va and vb in Fig. 2.2)

4. Elevation distribution in the points of the two vectors.

The algorithm will then check if the parameters are within the thresholds and make
the decision if a point belongs or not to a road curb.

The method applied by Zhang et al. proves to have efficient results when compared
with similar approaches.

Figure 2.2: Curb scenario description.

Hu et al. use an HLD-64 SE3 LIDAR with 64 laser layers and 360º range to extract
road boundaries using the model shown in Figure 2.3a. First, a sliding pane method is
used to extract the road boundary based on two principles: the height difference between
adjacent points of same laser layer increases along the road curb and the point cloud
curvature in the same laser layer changes significantly along the road curb. After the
boundary extraction, Hu et al. apply a RANSAC algorithm to conduct straight line fitting
on the boundary points collected and a Kalman and Amplitude-Limiting filters to remove
abnormal line equations and smooth linear jitter, obtaining the fitting road boundary
lines (Figure 2.3c).
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(a) Road model used in Hu’s method.

(b) Point cloud obtained in in Hu’s method.

(c) Line fitting visualization in in Hu’s method.

Figure 2.3: Methodology and results used in in Hu’s method.

Some approaches, like the method described by Kang et al. in [11], also combines the
use of Hough Transforms to detect curb with the use of a Kalman filter [10] to track the
position of the curb. The existence of a curb is decided based on a probability threshold
to accurately estimate the roadside curb position. The decision making algorithm is
explained in Figure 2.4 resulting in the decision whether to follow the path or not. This
approach presents a powerful tool due to combining LIDAR and advanced algorithms
and decision making.
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Figure 2.4: Decision making algorithm scheme.

Xu et al. in [24] use a similar approach to the one studied, also based on a density
gradient of point clouds. The methodology consists of calculating the difference of density
in adjacent voxels in 2D and then adding the 3rd dimension as the difference of elevation
between voxels (Figure 2.5).

(a) Elevation difference. (b) Intensity difference.

Figure 2.5: The different definitions of the 3D gradient.

The road classification (Figure 2.6) is then based in three principles:

1. The voxel within the surface, corresponding to only one large gradient.

2. The voxel in the intersection of two surfaces, corresponding to more than one large
gradient.
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3. The voxel in the intersection of three mutually non-parallel surfaces, corresponding
to three large gradients.

Figure 2.6: Three areas in road point clouds, namely sidewalk, roadway and curb.

2.1.3 Critical Analysis

In relation to this work, Xu et al.’s approach is the one that comes the closest to
the proposed work, by also using point cloud density and gradients. However, Xu’s
methodology diverges by adding the third component of gradient as elevation differences
and follows a completely different path by doing road classification and identifying features
as opposed to focusing on road limits.

In addition, all the described methodologies have as a base a 3D 360º LIDAR, offering
a completely different perspective (Figure 2.7a), less close to the car and focusing on a
wider view with bigger obstacles like tree or people. The LIDAR used in the proposed
method (Figure 2.7b) only has a field of view 85º and is placed to contemplate objects
close to the car and at ground level, like holes and depressions, road curbs and others.
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(a) Point cloud map obtained with a
velodyne.

(b) Point cloud map obtained with a SICK-LDMRS
in the front of the car.

Figure 2.7: Difference between different a Velodyne and the LIDAR used in this disserta-
tion.

2.2 Ground Truth Gathering

It is fundamental to evaluate the performance of an algorithm and quantify the "correct-
ness" of its results. Usually statistical measures like Precision (Equation 2.2), Specificity
(Equation 2.3), NPV (Equation 2.4), Recall (Equation 2.5), F-measure (Equation 2.6)
and Accuracy (Equation 2.7) and are used to quantify performance of automotive applic-
ations [5]. These evaluation tools are based on relations between true positive (TP), false
positive (FP), true negative (TN) and false negative (FN).

Precision/PPV =
TP

TP + FP
(2.2)

Specificity/TNR =
TN

TN + FP
(2.3)

NPV =
TN

TN + FN
(2.4)

Recall/Sensitivity/TPR =
TP

TP + FN
(2.5)

F-measure = (1 + β2)
Precision× Recall

β2 × Precision + Recall
(2.6)

Accuracy =
TP + TN

TP + FP + TN + FN
(2.7)

To perform this evaluation, it is necessary to obtain the ground truth of the path
intended to test.

Some works, like [26] and [14], calculate road boundaries manually frame-by-frame.
Although quite easy and direct, this is a time consuming and inefficient process.
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Some authors also use databases of labeled curbs that can be found online. An
example of this is the evaluation done in [27], yet, this is not possible for every situation
and may not be easy to implement the comparison.

In [25], Yang et al. convert the detected boundaries in a Keyhole Markup Language
(KML) format and imported into Google Earth. These boundaries are overlapped with
Google Earth images and the result is visually checked. To perform a quantitative
evaluation, road boundaries are also manually extracted and save onto data sets that
correspond to the ground truth.
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Chapter 3

Experimental Infrastructure

This chapter describes in detail the different tools used in this dissertation, both in the
form of hardware and software. The hardware are the sensors that were used to gather
data when the Atlascar2 is navigating, and its correct the placement in the vehicle. And
the software tools that serve as a bridge to gather and analyze information from the
sensors and achieve the final output of road limits.

3.1 Hardware

3.1.1 SICK LD-MRS400001

The most important device in this work is the 3D LIDAR sensor. A LIDAR is a device
that measures distances to obstacles through the emission of high-frequency laser beams.

In the case of SICK LD-MRS400001 (Figure 3.1), it is a 3D outdoor sensor with the
possibility of 4 measuring planes. Its long range scanner allows to measure up to 250m of
distance.

In table 3.1 are described as the main features of this sensor [7].

Figure 3.1: 3D LIDAR sensor Sick LD-MRS400001.
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16 3.Experimental Infrastructure

FEATURES

Application Outdoor
Laser class 1 (IEC 60825-1:2014, EN 60825-1:2014)
Horizontal aperture 85° (4 measuring planes), 110º (2 measuring planes)
Vertical aperture 3.2°
Scanning frequency 12.5 Hz ... 50 Hz
Angular resolution 0.125°, 0.25°, 0.5°
Working range 0.5 m ... 300 m
Scanning range 50 m
Amount of evaluated echoes 3

Table 3.1: Relevant features of Sick LD-MRS400001.

To meet the needs of this work the LIDAR was previously configured to 4 measuring
planes with an aperture of 85º and 50Hz of frequency and consequentially an angular
resolution on 0.5º since having a high scanning frequency is fundamental and more
important than angular resolution.

Figure 3.2 shows a detailed view of the LIDAR placement in the front of the AtlasCar2,
close to the ground.

Figure 3.2: LIDAR placement in the AtlasCar2.

With its current setup, the sensor is in a position that provides a unique point of view
of the road. Figure 3.3 illustrates a simulation of the 4 layers of the LIDAR it is clear that
the position and orientation of the beams result in a point cloud accumulation focused in
the features of the road like curbs, road pins, sidewalks, among others obstacles present
in the road.
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Figure 3.3: Simulation of the 4 layers LIDAR mounted on the car.

3.1.2 Novatel SPAN-IGM-A1 and Novatel GPS-702-GG Dual-Frequency
Antenna

The combination of Novatel SPAN-IGM-A1 (Figure 3.4a) and Novatel GPS-702-GG
(Figure 3.4b) offer a powerful positioning solution based on Synchronous Position, Attitude
and Navigation (SPAN) technology, that takes advantage of both the accuracy of Global
Navigation Satellite System (GNSS) and the stability of Inertial Measurement Unit (IMU)
resulting in a stable solution, even when the satellite signal is blocked [16].

This combo allows for very precise global positioning and is fundamental to position
the car and point clouds in the world.

(a) GNSS inertial navigation system
SPAN-IGM-A1.

(b) Dual-Frequency GPS antenna Nova-
tel GPS-702-GG.

Figure 3.4: Inertial Navigation and GNSS.

In the AtlasCar2 the current setup uses the combination of these sensors and is
configured to use Global Positioning System (GPS) signal with a frequency of 20Hz,
that goes to the SPAN receiver to be processed along with IMU data, gathered at a
frequency of 200Hz. Both sensors are connected to the car through RS232. This setup
was configured by P. Nova and is further explained in [15].

3.1.3 AtlasCar2

As mentioned in chapter 1, AtlasCar2 is a prototype for research on ADAS, so it is
equipped with multiple devices to assist its purpose. Besides the 3D LIDAR and the GPS
and IMU combo mentioned before, it also has four optoelectronic sensors Sick DT20 Hi
(two in visible in figure 3.5 and two in the back of the car), that assist in the inclinometry
module. In the car, there is also a PointGrey ZBR2-PGEHD-20S4C and two PointGrey
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FL3-GE-28S4-C cameras to perform road perception with artificial vision by identifying
road lanes, pedestrians, and other features. The car is also supplied with two SICK
LMS151.

The Sick DT20 Hi are currently configured with 2.5ms response time (400Hz) and
a measuring range between 200mm and 700mm and are connected to an arduino that
internally calculates the inclinometry of the car and published the topic /DadosInclino.

Figure 3.5 shows the placement of each device in the body of AtlasCar2 and Figure
3.6 shows the position of the GPS antenna in the body of AtlasCar2.

Figure 3.5: Sensor placement in AtlasCar2.
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Figure 3.6: GPS placement in AtlasCar2.

The car is also equipped with an Uninterruptible power supply (UPS) unit that
provides about 30 minutes of power to the computer when the car is moving.

3.2 Software

3.2.1 Robot Operating System (ROS)

Responding to the need to have an open source dedicated software for robotics, ROS was
created in 2007 at Stanford University. Its main intention is to "encourage collaborative
robotics software development" [22], by promoting the development of multiple institutions
and for multiple robots, creating a really unique software platform directed for robotics
and build by the overall community.

In a simple way, a ROS project is constituted by different modules, nodes, that
communicate between them through messages, defined data structure for each message
type. This messages can be published and subscribed to through topics, that link nodes
between them. Nodes are also grouped in packages, that can contain several nodes,
or just one, and are defined by a single CMakeList.txt file, where the specifications
necessary to compile the package are defined.

Figure 3.7 [21] is shows a diagram that illustrates the functioning of ROS.
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Figure 3.7: Schematics of ROS functioning.

Also very relevant to this work is a set of tools for recording and playing back ROS
topics, rosbags. This tool allows to record the desired topics, for example, from real
data from sensors, in a bag file and replay them from any computer. This is an essential
tool to enhance the work progress once it would be unsustainable to perform real testing
to each modification and tool developed. With bag files, the data from GPS, IMU and
LIDAR can be recorded in the real environment onboard of the AtlasCar2 and the
information can be replayed in the same situation as if in real time.

Existing Architecture

As mentioned in chapter 1, the work developed in this dissertation is a continuation of
previous work done in the Atlas project.

The existing architecture necessary to this work contained three main packages:
road_reconstruction, orientation_module and free_space_detection.

In Figure 3.8 there is a scheme with the relations between the existing nodes and
topics and the communications between them. In resume, belonging to road_reconstruction
package, there a node with the same name. This node subscribes to the laser data and
assembles a point cloud with the information from the 4 laser layers, also making the
accumulation with the car movement with a laser assembler. It also performs the necessary
operations to obtain the road limits defined in [12], in the form of a new point cloud
where points represent obstacles in the road.

To the orientation_module package belongs the comunic and frame_tf_broadcaster
nodes present in Figure 3.8. These nodes create the necessary frames (Figure 3.9) and
transformations between them with the support of a calibration file them and also process
the correct the inclinometry of the car, computed by an arduino connected to the Sick
DT20 Hi.

Finally, free_space_detection packages uses device_frame_publisher to publish
the correct frames for each device in the car.

Very briefly, the map frame is placed in the first GPS coordinates received by the
program, then there is a transformation to the ground frame, clamped to the ground,
directly below the GPS antenna. The car_center frame is placed on the center of the
vehicle to allow roll-pitch-yaw (RPY) calculations, as seen in figure 3.11. The moving_axis
frame is placed on the front of the car, following the car movement, and finally, lms151_E
corresponds to the frame of the left SICK LMS151 and serves as a reference to all the
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other sensors’ frames.

Figure 3.8: Node graph of existing architecture.
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Figure 3.9: Frame tree of AtlasCar2.

Figure 3.10 [12] shows a visualization in rviz of the most relevant frames described
in Figure 3.9 in their correct placement relatively to each other.

Figure 3.10: Frame tree visualization of AtlasCar2 with rviz.

D. Rato Master Degree



3.Experimental Infrastructure 23

Figure 3.11: Frame tree visualization overlapped with AtlasCar2.

Final Architecture

For the development of this work, two new packages there were added, negative_obstacles
and eval_api. Each package, as shown in Figure 3.12, has one node with the same name.
The first one concerns the identification of road limits as the second one concerns the
development of a ground truth and quantitative evaluation of the detected limits and
negative_obstacles has also a node exclusively to perform the point cloud accumulation
and assembling.

The road_reconstruction node developed by T. Marques, due to high computational
weight processing point clouds, was publishing the accumulated clouds at a much slower
rate than desired (0.5 Hz to 1 Hz), considering that the LIDAR is configured to output
data at 50 Hz. This slow publishing rate caused problems reconstructing the environment
and resulted in a bad accumulation, specially at higher car speeds. To solve that problem,
a newly separated node was created in the negative_obstacles packages to only perform
the assembling and accumulation of laser reading. Also, the cloud accumulation buffer
was decreased from 150 to 100, thus increasing the frame rate in about 34 times.

Briefly, the negative_obstacles node subscribes to the accumulated cloud and
performs the operations required for the different edge detections, publishing the corres-
pondent Occupancy Grid topics with the results.

One of this topics at choice is subscribed by the eval_api node to perform the
evaluation of that same edge detector. This node subscribes to /inspva topic to obtain
the coordinates of the car at every frame, saves the coordinates in a KML file and also
reads the drawn road limits to create a ground truth and perform calculations. In the
end of the program the statistical indicators for each frame of evaluation are saved in a
CSV file.

The development of this packages will be further explained in chapters 4 and 5,
respectively.
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Figure 3.12: Node graph of final architecture.
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3.2.2 Other Libraries

PCL

The Point Cloud Library (PCL) is an open-source library providing countless algorithms
for 2D and 3D image and point cloud processing (Figure 3.13 [18]). Created in 2010, it
is a well known C++ library used around the world mainly in perception and artificial
vision in robotics. PCL’s main advantage is the possibility to treat and analyze data from
LIDAR and similar sensors like kinetics and grouping sensor data in point clouds, data
structures that represent multi-dimensional points [18].

Figure 3.13: PCL tree of libraries.

PCL can be integrated with ROS in a package named pcl_ros that allows to perform
operations within ROS environment like transformations between different frames.

In the line of this work, PCL is a fundamental tool to gather and compute data from
the laser sensors. Figure 3.14 shows a clear example of this in data gathered in a path
around the University of Aveiro. This image was obtained with the accumulation of laser
readings through the complete route around the University.

Figure 3.14: Example of laser readings accumulation using PCL.
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OpenCV

Open Source Computer Vision Library (OpenCV) is an open source library built for
computer vision and machine learning. With interfaces for C++, Matlab and Python
and supporting Linux, Windows, MacOS, and Android, is one of the most universal and
complete libraries for computer vision. It has more than 2500 algorithms, performing
recognition, identification, classification, tracking, etc [17].

OpenCV is a powerful tool for image processing and has interesting features in the
integration of grid maps with images, allowing conversions from grid maps to images and
vice versa. These features were of extreme importance, giving the possibility to apply
complex edge detection filters (Figure 3.15) available in OpenCV libraries in density grids
collected from laser data.

Figure 3.15: Example of image processing toolbox in edge detection.
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Chapter 4

Detection of Road Limits

This dissertation’s main goal was defined since the begin as the establishment of the
navigable road limits. Logically, there are endless different approaches that can lead to
road limits detection, but through the years, in the Atlas Project, the accumulation of
laser readings (i.e. point clouds) with the car movement proved to be an interesting and
less studied approach [23]. This accumulation, further studied by T. Marques [12], allows
instant decision making, identifying road obstacles on time.

The definition of a new and effective methodology for road limits detection is the
core of this dissertation. As the title suggests, the idea was to take advantage of point
cloud density to detect, not only positive obstacles, but also negative, as depressions, and
inverted curbs.

Although other authors, as mentioned before in Chapter 2, have also applied gradient
filters, the method proposed in this dissertation takes it a step further by applying edge
detection techniques to point clouds.

4.1 Approach

Taking advantage of the car movement to create a point cloud accumulator and mapping
the road as the car moves by placing the point clouds in the world frame resorting to
GPS data is the core idea of this work. The assumption is to use this mapped point cloud
to define a rule that allows detecting the road limits in real time.

In his approach, T. Marques limited the algorithm to eliminate points in low-density
zones, under the assumption that road limits are defined as high-density zones [12].
Although presenting good results in general, this method failed in identifying negative
obstacles, such as inverted curbs, that are exactly defined as "shadow" zones with zero
point cloud density (Figure 4.1 [14]). So, the challenge is how to identify empty zones as
well as high-density zones.
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Figure 4.1: Positive vs negative obstacle.

Since the beginning, the density gradient seemed the right direction to go, as it
contemplates both positive and negative changes in density. Initially, the definition of the
medium road plane through PCL’s ransac techniques was considered but soon it became
clear that simply eliminating the z coordinate of each point and obtaining a 2D flattened
point cloud in the XY plane was enough.

As the work evolved, the idea became to create a two-dimensional grid attached to
the car frame: first, a density grid with data corresponding to the number of points in
each predefined square, and then grids with the results of density gradient and other
different edge detection techniques.

As grids follow the car movement, real-time visualization of the road limits became
possible.

4.2 Development of a Density Grid

The concept of an occupancy grid is to represent a map of the environment as an evenly
spaced grid with each cell representing the probability of the presence of an obstacle at
that location in the environment.

In ROS environment, occupancy grids are a part of navigation messages, nav_msgs,
and are defined by:

• A header, containing the frame id and time stamp

• An info, containing the resolution, height and width of the grid and its position
relative to frame id

• Cell data, a raw major vector containing the data relative to each grid cell.

The main idea was to convert the flattened point cloud (Fig. 4.2b) into a density grid
(Fig. 4.3) with the density of the point cloud in each grid cell, allowing to perform more
complex operations with a significantly lower computational effort. The density grid was
built under the following principles:
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1. The density inside each cell is equal to the number of points within the coordinates
of that cell.

2. The altitude component is not relevant, thus only x and y components were
considered.

3. The grid base frame is moving_axis (Figure 3.9 for further understanding) and
consequentially the point cloud must be transformed from the map frame to the
target frame.

4. Once there was no advantage in considering the information behind the car front,
the grid was defined with 40 m ahead of the car and 20 m to each side of the car,
making a grid with a final size of 40× 40m.

Note that, as shown in Figure 4.3, the x-axis is along with the car movement and
y-axis to the side of the car.

(a) Camera view. (b) Point cloud of the road.

Figure 4.2: Camera image and correspondent accumulated point cloud.
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Figure 4.3: moving_axis frame orientation and positioning.

Although the influence of grid resolution in the detection of road limits is discussed
further on (Section 6.2.3), the base resolution is considered 0.4 m/cell. Also, Fig. 4.2a
shows a camera image from the camera installed in the car in the same frame of the point
cloud and density grid visible in Fig 4.2b. In this image it is possible to visualize the real
environment and the road curbs detected.

Figure 4.4a shows a density grid in a straight road situation. Darker zones represent
higher density while lighter zones represent lower density, with white as zero density. In
Figure 4.4b there is a representation of the density grid overlapped with the point cloud
that originated it.
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(a) Density grid. (b) Density grid overlapped with the corres-
pondent point cloud.

Figure 4.4: Density grid visualization.

To develop this grid, the negative_obstacles package was created with its corres-
ponding node. In this node, the accumulated point cloud topic, created by a cloud
accumulator, is subscribed and with pcl_ros it is transformed to the moving_axis frame.
Then, for each point of the point cloud, the cell coordinates (line and column) to which it
belongs are calculated. To convert the matrix coordinates to a row-major vector indexes,
the equation index = line+ column× number of columns is used.

A nav_msgs::OccupancyGrid according to the described proceedings was created with
the density information and published in the correspondent topic. With ROS visualization
tools, rviz or mapviz, the grid can be visualized along with the car movement.

In order to standardize the density values in each frame and minimize the impact
of car velocity and variations in the RPY values, the density occupancy grid values are
normalized to the maximum density value in each frame, returning values from 0 to 100.

4.3 Density Gradient

As an answer to the question of how to identify negative obstacles in the accumulated
point clouds, the use of gradients appears as a tool to identify both positive and negative
changes in density, that define, respectively, positive and negative obstacles.

These gradients are applied in the form of bi dimensional filters. For each pixel
location (x,y) in the image or grid, its neighborhood is considered and used to compute
the response as a weighted sum of pixel values. The computed response is stored in a
new image or grid at the same location pixel coordinate.

Logically, the more complex the filter, the more difficult the implementation and
computational effort, and more complex filters were out of reach in computational
complexity of manual implementation. The solution was to use GridMapRosConverter
package to easily convert the density grid in an OpenCV image and open a new set of
edge detection tools in the image processing toolbox. This conversion has two steps:
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convert the occupancy grid into a GridMap, and convert the grid map to a cv::Mat, an
OpenCV image, with a CV_8UC1 encoding (8-bit unsigned type with one channel).

To this image, the 2D filters are applied with algorithms in the OpenCV image
processing libraries and converted back into new occupancy grids through the same
process.

After applying each edge detection operator, the images must be converted to absolute
values since both positive and negative gradients are relevant.

A big advantage in this process is the possibility to apply a custom threshold when
converting the image back to a grid and eliminate low-interest regions in the edge detection
process.

So, with the density occupancy grid defined, the next step was to create new grids
with the horizontal and vertical gradient, and gradient magnitude. The grids were created
separately in order to evaluate the most efficient in this particular case.

A grid with the gradient direction was also developed but didn’t lead to any significant
result and it was discarded.

To calculate the horizontal (Gy) and vertical (Gx) gradients, the filters used were,

respectively,

 0 0 0
−1 1 0
0 0 0

 and

0 −1 0
0 1 0
0 0 0

 .

Figure 4.5 represents the behavior of each Gradient component in the presence of a
frontal obstacle. As expected, Gx is the main responsible for the identification of these
obstacles as there is no density change to the sides. Antagonistically, in Figure 4.6, Gy

identifies the side curbs and Gx doesn’t detect significant modifications. Figures 4.5c and
4.6c show the gradient magnitude, calculated by equation 4.1, where the approximation
is implemented to decrease computational effort. As expected, the Gradient magnitude
performs well in both situations and is the most appropriate to identify all types of
objects. ∥∥∥~G∥∥∥ =

√
G2

x +G2
y ≈ |Gx|+ |Gy| (4.1)

(a) Component x of the Simple
Gradient.

(b) Component y of the Simple
Gradient. (c) Gradient magnitude

Figure 4.5: Simple Gradient grids in a frontal obstacle situation.
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(a) Component x of gradient. (b) Component y of gradient. (c) Gradient magnitude

Figure 4.6: Gradient grids in a curve situation.

4.4 Edge Detection Algorithms

After calculating the Simple Gradient, the transition to more complex filters like Prewitt
and Kirsch filters’ was the natural way to go.

A Prewitt filter is defined by the following operators: Gx =

−1 0 1
−1 0 1
−1 0 1

 and

Gy =

−1 −1 −1
0 0 0
1 1 1

 . The magnitude of the filter in each pixel, in this particular

case, cell, is then again defined by Equation 4.1. In Figure 4.7b
Although more sensible to noise Kirsch edge detector was calculated through a

similar process and is defined by Fy =

5 −3 −3
5 0 −3
5 −3 −3

 and Fx =

−3 −3 −3
−3 0 −3
5 5 5

 ,

considering only 2 of the 8 possible directions of this operator. Figure 4.7a shows the
result of edge detection using Kirsch.

(a) Kirsch gradient magnitude
grid.

(b) Prewitt gradient magnitude
grid.

Figure 4.7: Edge detection grids visualization.

When using more complex edge operators already predefined in the OpenCV image
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processing toolbox, as Sobel, Canny and Laplace, in general three parameters need to be
given as input: the kernel size, odd number that defines the size of the filter, set to 3, the
scale, if necessary to scale the output, and Delta, an optional value that is added to the
results prior to storing them in a matrix, both as 0.

Figure 4.8 and Figure 4.9 show the performance of algorithms in both a curved and
a straight road situation. Visually, the Laplacian operator seems to have the most well
defined and smoothest detection and works well in both situations. The results obtained
with Canny are good but the algorithm is very sensible and doesn’t result well in every
situation.

(a) Laplacian filter. (b) Prewitt filter.

(c) Sobel operator. (d) Canny filter.

(e) Gradient operator. (f) Kirsch filter.

Figure 4.8: Edge detection grids in a curve situation.
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In straight road situations as shown in Figure 4.9, the Laplacian operator presents
again more complete and fine results, namely on the right side of the road, where the
other algorithms fail. Comparing it with other detection mentioned above, Kirsch filters
detect obstacles with poor precision, and Gradient filter identifies fewer obstacles than
the rest as only x and y directions are considered in contrast to other filters.

(a) Laplacian filter. (b) Prewitt filter.

(c) Sobel filter. (d) Canny filter.

(e) Gradient filter. (f) Kirsch filter.

Figure 4.9: Edge detection grids in a straight road situation.

As expected, edge filters detect a lot of useless information and the most prominent
features are detected in the form of high cell magnitudes. To filter the information,
applying a threshold becomes in some cases necessary so that grids only show the relevant
density variations, especially on more sensible filters. The influence of threshold application

D. Rato Master Degree



36 4.Detection of Road Limits

varies from filter to filter, once some filters are susceptible to different noise levels. The
application of this threshold is possible when converting the OpenCV images back to
Occupancy Grids, that allows to only convert from a certain user-defined value. The
study of the influence of the threshold application and the optimization of the same will
be studied later on in chapter 6.

Figure 4.10 shows the example of a Laplace grid before and after filtering. As can be
seen, in Figure 4.10a has a lot of noise areas due to the filter being prone to noise and in
Figure 4.10b that same noise is eliminated due to only considering cell values above 120,
in this particular case.

(a) Raw Laplace grid. (b) Laplace grid after the application of a
threshold of 120 in 255.

Figure 4.10: Edge detection grids visualization.

4.5 Closest Limits to the Car

In reality, the purpose here is to find the navigable road limits, thus objects detected
beyond the first obstacle at the right and left of the car are irrelevant. With that in mind,
a function was developed to clean the detected edges to contemplate only the closest
limits to the car (Figure 4.11).

Knowing the center of the moving_axis frame (Figure 4.3), a matrix of zeros was
created and for each line, only the first detected cells to the right and to the left of the
car were passed from the considered grid’s data.

Although the goal would be to obtain a full complete line corresponding to road curbs
or similar features defining the road limits, that is unlikely to happen, as, the further the
distance to the car, the more scattered laser readings become, and consequently there
is a loss of information and lower objects may not be detected. Taking the example
represented in Figure 4.11, close to the car, road curbs are more or less well identified, but
approximately halfway through the grid, they start disappearing and the first detected
object becomes a building at the left side of the road limits.

Despite this problem, as the point cloud accumulation is constantly happening as 50Hz,
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the girds are updating at this rate and the limits are well defined at approximately 10 m
to 30 m ahead of the car, this distance is enough to make instant decisions of trajectory
and the badly defined limits will be defined seconds later, which makes this problem less
relevant.

In addition to removing unnecessary information, this cleaned grid also allows a better
quantitative evaluation (see Chapter 5).

(a) Raw grid. (b) Cleaned grid.

Figure 4.11: Example for Laplacian operator.
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Chapter 5

Development of a Ground Truth
Application

To evaluate the performance of an algorithm it is necessary to compare its results with
ground truth correspondent to the reality. In this case, to compare the real road limits to
the ones found with the described approach, a ROS package was created to perform a
quick and automated approach to an evaluation method.

5.1 Approach

Although the initial idea was to develop a GTK application to manually draw road limits
from maps and camera images frame-by-frame, this would be a time-consuming process
because road limits would have to be drawn individually for each frame and the real limits
would only rely on the human eye to select each cell correspondent to an obstacle. Taking
that into consideration, the idea evolved to using KML files to draw the total limits on
Google Earth and create a ROS package to read those files, extract the coordinate points
and convert them to the correct frame, allowing to convert those limits into an Occupancy
Grid, by a similar process to the one applied to point clouds.

KML files, developed by Google and maintained by Open Geospatial Consortium
(OGC), are used to display geographic data in an Earth browser such as Google Earth.
KML is an XML language focused on geographic visualization, including annotation of
maps and images. The geographic visualization includes not only the presentation of
graphical data on the globe but also the control of the user’s navigation in the sense of
where to go and where to look [1].

With this work in mind, one of KML the main features is the possibility to draw lines
or polygons with latitude and longitude coordinates, as shown in Figure 5.1. This can
be read by the program, that then compares those coordinates with the car coordinates
obtain from the GPS satellite and IMU combo.
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40 5.Development of a Ground Truth Application

Figure 5.1: Example of road limits marking using KML file with orange lines representing
road limits.

In line with this work, navigable space is defined as the space within road limits,
where the car can, allegedly, navigate with safety.

Although this method relies on the quality of GPS data and has several error sources
as human error drawing limits or a poor GPS calibration, the main objective is to develop
a metric to, not only compare edge detection algorithms, but to easily evaluate the
navigable road limits detection in standard situations with no unusual obstacles. It
should be noted that, for the purpose of ground truth testing, the main purpose of this
work is to find navigable road limits and not to detect temporary obstacles or similar
barriers. With this in mind, a cell will be considered a positive if it belongs to the
navigable space and a negative if it is outside the navigable space.

5.2 Integration with Google Earth

To facilitate the process of marking the ground truth, the first step was to automatically
save the car coordinates for each frame in a KML file, allowing to visualize the car path
in the Google Earth application (Figure 5.3). With this path, knowing the exact correct
place to mark road limits becomes easier.

To this end, the GPS topics must be subscribed to obtain the car latitude and longitude
in each frame. At the beginning of the program, a file is created with the correct XML
headers. To that file, latitude and longitude are constantly added, with zero altitude,
and each point is separated by commas. At the end of the program, the file handler is
closed and the file is saved becomes readable by Google Earth. The process is explained
in Figure 5.2.
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Figure 5.2: Diagram of coordinates acquisition process.

In the following code, an example of a KML file with one point is presented, with
the correct headers. In Google Earth, lines can be custom to have different colors and
width but, in this context, these parameters are not relevant. To draw a path (i.e. a
line), the styleURL field must be pathstyle. The coordinates of the path’s points are
between the tab <coordinates> </coordinates> and latitude, longitude and altitude
are separated by commas and each point separated by spaces. In this case, altitude is
ignored and always set to zero, assuming points are clamped to the ground. Figure 5.3
shows a Google Earth image of a path around University of Aveiro in the form of a KML.

1 <?xml version=’1.0’ encoding=’utf−8’?>
2 <kml xmlns=’http://www.opengis.net/kml/2.2’>
3 <Placemark>
4 <description>Path to evaluate road limits precision</description>
5 <styleUrl>#pathstyle</styleUrl>
6 <LineString>
7 <tessellate>1</tessellate>
8 <coordinates>−8.6328479884000000055,40.633761692699998491,0</coordinates>
9 </LineString>

10 </Placemark>
11 </kml>
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Figure 5.3: Example of the car path around University of Aveiro using a KML to upload
the car coordinates to Google Earth.

Unless the car path is predefined before driving and the ground truth pre-marked,
this evaluation is only possible when using of rosbags. In this work, rosbags are used
to record laser and GPS data in the form of published topics, allowing to play back the
information to later compare it with the later drawn ground truth.

The process of reading the road limits in the form of ground truth is more complex.
This process involves drawing the data corresponding to the right and left side of the
road. The program opens the correspondent files and identifies the coordinates within the
tab <coordinates> </coordinates>. Each point is separated by commas, so a string
vector with each point string is created and, as each coordinate is separated by spaces,
the latitude and longitude are separated and place in double type vectors.

5.3 Coordinates Conversion

The coordinates placed in the World Geodetic System (WGS 84) frame need to be
transformed to the correct car frame, moving_axis. This requires the following steps:
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1. Convert the car latitude and longitude to the Universal Transverse Mercator (UTM)
frame.

2. Convert every road limit point to the UTM frame.

3. With both points in a metric scale, calculate the difference between each point
coordinates and the car coordinates.

4. Rotate the obtained coordinate to the moving_axis orientation by performing a z
rotation correspondent to the yaw (azimuth in the GPS message) (Equation 5.1).

5. Add 2.925 m to the x coordinate of each point, correspondent to the translation
from the ground frame (below the GPS antenna) to the moving_axis frame (see
Figure 3.9 and 3.10 for better comprehension)

xcorrectycorrect
1

 =

 cos(yaw) sin(yaw) 0
− sin(yaw) cos(yaw) 0

0 0 1

xutm_point − xutm_car

yutm_point − yutm_car

1

 (5.1)

To create a continuous line, an interpolation function was implemented to create new
points within the lines, assuming a straight line between each one.

5.4 Ground Truth Visualization

The points go through the same process of transformation into an Occupancy Grid as
point clouds, scanning each point and checking if its coordinates are inside the grid’s
limits. As the coordinates are on the moving_axis frame, they will only appear in the
grid if they are 40 m ahead of the car, thus, a variable was created to detect when the
ground truth is in the grid’s limits and initiate the statistical measures referred in 2.2.

Figure 5.4 shows a Google Earth image of the car path, in red, with the correspondent
ground truth, in green. In the image it is visible that the combination of GPS and IMU
provides very accurate data, even detecting lane changing. This accuracy is fundamental
for this evaluation method to work bearing in mind that GPS data is the core of the
developed method.
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Figure 5.4: Google Earth representation of the car path, in red, and correspondent ground
truth curbs, in green.

First, a ground truth grid with the right and left limits is obtained (green lines in
Figure 5.5a) and then filled to comprehend the navigable space (Figure 5.5b). The same
process is applied to the grid with the closest limits to the car (see Section 4.5) to allow
comparison through statistical calculations. The obtained grid with the navigable space
calculated with the road perception method can be observed in Figure 5.6. With a visual
analysis of this last grid, it is clear that road limits are not always well defined, especially
in the beginning and end of the grid, mostly due to lack of information at certain cells or
false positives on the middle of the road caused by excessive accumulation in the road
surface, nevertheless a road profile is visible and allows comparison with the ground truth
grid calculated.
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(a) Grid with a representation of a linear
ground truth.

(b) Filled grid corresponding to the navig-
able space.

Figure 5.5: Ground truth grid.

Figure 5.6: Example of navigable space grid for Laplacian edge detector.
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5.5 Statistical Calculations

As mentioned before, a positive cell is considered a cell in the navigable space. So,
comparing both the ground truth grid (Figure 5.5b) and the algorithm grid, the statistical
measures TP, TN, FP and FN can be calculated for each frame.

To make the process more automated, a variable was created that is set when the
ground truth’s points are close enough to the car to appear in ground truth grid, letting
the program know that it should start performing statistical calculations and saving
the indicators. For each frame, measurements from Equations 2.2, 2.3, 2.5, 2.6 and 2.7
are calculate and saved in an handle that, in the end of the program, is exported in
the form of a CSV file. This allows importing the performance data to a data sheet
with the final aim to perform further calculations to evaluate and compare algorithms
performance. Although the initial goal was to create Receiver Operating Characteristics
(ROC) curves with the variation of studying parameters, this proved not to be possible
due the characteristics of the problem not fitting the necessary profile (the Specificity
does not variate).

Due to excessive accumulation directly in front of the car (Figure 5.8), the quantitative
evaluation will only consider information from 10 m to 30 m from the car front, due to
considering that no decisions from navigation algorithms will be taken for that distance,
once 10 m are traveled in less than 1 s at normal car speed. Note that this excessive
accumulation is due to alterations in the LIDAR inclination with the car movement.
Moreover LIDAR is set to a covering range of only 85º, as shown in Figure 5.7, making
the accumulation close to the car restricted to the area represented in blue.

Also, the accumulated information from point clouds is not well defined to correctly
map the road at big distances and the further the distance, the more limits fade also due
to changes in the car pitch and roll caused by accelerating, decelerating and changing
direction. For all these reasons, calculations will only consider 20 m ahead of the car,
meaning half the grid.

Figure 5.7: LIDAR simulation with covered range of 85º.
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Figure 5.8: Excessive accumulation directly in front of the car.
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Chapter 6

Tests and Results

The definition of a metric to quantify the performance of road detection is fundamental,
not only to generally evaluate the results but mainly to study the influence of some
parameters and optimize the algorithm to its best performance and evaluate its robustness
to different conditions.

In this chapter, the influence of cell resolution, car velocity, grid thresholding, road
condition, and profile and, mainly, the difference of detection performance between each
algorithm.

6.1 Qualitative Evaluation

Looking at Figures 4.8 and 4.9 that show the results of all the algorithms in a straight
road and in a curve situation, visually, the Laplacian filter seems to be the one that
performs better in both situation. This filter is a very common edge detector, usually
combined with a Gaussian filter to remove noise. In this case, removing the noise would
not produce the desired result because it smooths the edges and creates false information.

The Sobel operator seems to produce also very efficient edge detection, slightly similar
to Canny but the latter results in some loss of information and doesn’t detect more
distant edges.

The Kirsch operator visually works very well in a straight road, but it appears not
so efficient in the curve detection. Kirsch operators are usually a combination of 8
multidimensional masks, covering all 8 directions, although here only two directions were
considered (see section 4.4). It is also very sensitive to noise, like Laplace operator.

Gradient and Prewitt operators present more blurred results and then again Prewitt
doesn’t detect edges at longer distances.

In the straight road situations, the Laplacian operator presents again more complete
and fine results, detecting information, namely on the right side of the road, where the
other algorithms fail. Comparing it with other detection mentioned above, Kirsch filters
detect obstacles with less precision, and gradient filters identify fewer obstacles than the
rest as only x and y directions are considered in contrast to other filters.

Also in Figures 6.1 there is a representation of the navigable space obtained from each
edge detector in the same moment. By the analysis of these images, it can be concluded
that:

• Although being the only one that results relatively well close to the car, the Canny
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edge detection produces poor worse results when more distant from the car, with
lots of gaps in the detection.

• All the edge detectors, apart from Canny produce poor results in the 10 m ahead of
the car.

• The simple Gradient filter is the one with fewer gaps in the detection and more
clear road, apart from the initial meters.

• The Laplace and Prewitt algorithms produce similar results with some gaps in the
middle of the road.

• Sobel and Kirsch filters have defined road but further away from the car than the
rest of the algorithms.

(a) Grid with Laplacian filter. (b) Grid with Prewitt filter.

(c) Grid with Sobel filter. (d) Grid with Canny filter
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(e) Grid with Gradient filter. (f) Grid with Kirsch filter

Figure 6.1: Behavior of edge detection techniques to detect navigable space in a straight
road situation.

6.2 Quantitative Evaluation

The quantitative evaluation of the algorithms is done using the methodology explained in
Chapter 5. The calculations are performed for a frame range of 100 to 1000 frames and
then the value for each parameter is calculated.

For the purpose of this work, the most relevant parameters are F-measure and
Accuracy, once these include the global performance of the algorithm in terms of detection
of positives and negatives. The remaining parameters are less relevant but are also taken
into consideration, especially if they present particularly low values that may mean an
unreliable algorithm.

For example, Precision and Specificity are not very relevant for this evaluation because
even if the algorithm performs a poorly, the quantity of FP will be almost null, resulting
in a good Precision and Specificity too but not reflecting well the real performance of the
algorithm.

6.2.1 Algorithm’s Performance

In a preliminary analysis, all algorithms were tested in the exact same straight road,
using a rosbag file. The cell resolution was set to 0.4 m/cell and all the thresholds after
the edge detection application were set to zero. The threshold application is used to
eliminate the filter’s lower values in order to remove some noise, mainly in filters more
prone to it like Laplace and Kirsch. In this case, applying no threshold means that all the
edge detection values obtained from the filtering are considered to calculate the navigable
space.

Figure 6.2 shows a satellite view of the path used to perform this evaluation in Rua da
Pêga. This path has about 115 m. Figure 6.3 also shows a camera image in the moment
of evaluation, from the camera installed on the AtlasCar2.
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Figure 6.2: Satellite view of the path used to do the evaluation. In red, the GPS path of
the car, previously calculated. In green, the drawn road limits used for evaluation.

Figure 6.3: Camera view of the path used to do the evaluation.

This test aims to do a pre-analysis of the system and compare algorithms among them
for further evaluation.

D. Rato Master Degree



6.Tests and Results 53

Filter Precision Specificity NPV Sensitivity F-measure Accuracy

Laplace 84.1 90.5 70.7 60.5 70.0 75.9
Gradient 83.8 86.6 84.5 83.3 83.0 84.6
Sobel 83.9 89.8 71.8 63.1 71.7 76.7
Prewitt 81.6 87.5 78.9 72.6 76.0 80.2
Kirsh 86.9 89.9 72.3 66.7 75.4 78.1
Canny 86.0 91.5 66.6 52.3 62.5 71.7

Table 6.1: Statistical indicators in each algorithm’s performance with 0.4m/cell and no
threshold applied (10 m to 30 m).
Note: Percentage figures.

According to the results presented in table 6.1, and considering the Accuracy and
F-measure as the most important indicators of evaluation, the edge detection tool that
presents the best results is clearly the Simple Gradient. Although very simple, it provides
a robust solution by being insensitive to noise.

Also, the Prewitt edge detector provides good results in F-measure and Accuracy,
similar to the Gradient. It is interesting to note that the filters that visually look more
faded are the ones who have the best results.

Although being a very powerful and used edge detector tool one of the bests in terms
of Precision, the Canny edge detector presents poor Sensitivity and F-measure, making
the algorithm less suitable for this type of application.

6.2.2 Influence of Road Condition and Curb Profile

According to Yang et al. in [25], there are 3 curb profiles (Figure 6.4). Typically, Type I
curbs are the most common and usually easier to detect and correspond to the previous
testings. Type II curbs are more subtle, yet still detected by T. Marques algorithm. Type
III curbs are called inverted curbs and are harder to detect and representing negative
obstacles, defined by the lack of information in the shadow zone, visible as the unknown
area seen in Figure 4.1 [25]. Nevertheless, the fact of using edge detection techniques as a
tool to detect density changes allows to also identify the negative obstacles, defined as
negative gradients as well as the positive obstacles, which were already detected by T.
Marques with high-density search [12].

Figure 6.4: Types of curb profiles.

Figure 6.5 shows the path of about 280 m used to perform the evaluation of the
algorithms in the presence of negative obstacles. Also Figure 6.6 shows a camera image
in the moment of evaluation, from the camera installed on the AtlasCar2.
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Figure 6.5: Satellite view of the path used to do the evaluation of negative curbs. In red,
the GPS path of the car, previously calculated. In green, the drawn road limits used for
evaluation.

Figure 6.6: Camera view of the path used to do the evaluation of negative curbs.

To evaluate the performance of algorithms when faced with negative obstacles, a test
was performed in a straight road with Type III curbs. The results obtained are presented
in table 6.2.
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Filter Precision Specificity NPV Sensitivity F-measure Accuracy

Laplace 94.6 97.9 76.0 52.8 67.6 80.1
Gradient 85.0 91.8 83.6 72.0 77.9 84.0
Sobel 91.0 96.9 76.2 51.4 65.5 79.4
Prewitt 86.9 93.8 79.5 63.0 73.0 81.6
Kirsh 94.6 97.8 78.9 59.6 73.0 82.7
Canny 78.9 95.2 67.5 27.3 39.6 68.8

Table 6.2: Performance of algorithms in the presence of Type III curbs with 0.4m/cell
and no threshold applied (10 m to 30 m).

When comparing the obtained results with the ones obtained with Type I curbs in
the previous subsection (Subsection 6.2.1), the numbers are very similar and, in some
cases, even better.

The Canny edge detector continues to produce poor results, with even lower F-measure
and Sensitivity, proving once again not to be suitable for this application.

The Simple Gradient filter still produces the best results, although in general, all
algorithms had a decrease of Sensitivity when comparing them with the Type I curbs,
that measures the fraction of actual positives correctly identified.

6.2.3 Influence of Occupancy Grid Resolution

To evaluate the influence of the cell resolution (m/cell) in the performance of the system in
the same stretch of road, test were made with different resolutions. Table 6.3 and Figure
6.7 show the obtained results. This test was performed with the Simple Gradient edge
detector since it was the one that better identifies the situations, and also for considering
that the influence of the grid resolution on the other algorithms would be similar.

This evaluation was performed on the same road shown in Figures 6.3 and 6.2 by
repeating the process with different cell resolutions.

Resolution Precision Specificity NPV Sensitivity F-measure Accuracy

0.1 87.5 89.2 75.4 72.0 78.9 80.4
0.2 87.7 88.8 79.0 77.3 82.1 82.9
0.3 87.8 88.2 80.6 80.1 83.7 83.9
0.4 88.8 88.6 83.6 83.9 86.2 86.1
0.5 87.7 87.3 82.5 83.1 85.3 85.1
0.6 88.5 88.0 80.3 81.2 84.6 84.3
0.7 86.7 86.8 78.8 79.2 82.7 82.7
0.8 87.2 88.0 82.6 82.7 84.6 85.1
0.9 88.0 86.6 78.5 80.5 84.0 83.2
1.0 88.3 87.1 78.9 80.6 84.2 83.5

Table 6.3: Influence of cell resolution in statistical indicators for the density gradient with
0.4m/cell and no threshold (10 m to 30 m). Note: Percentage figures
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Figure 6.7: Influence of cell resolution in Statistical indicators for the density gradient
with 0.4m/cell and no threshold applied (10 m to 30 m).

Through the observation of the graphic, it can be concluded that a resolution of 0.4
m/cell is the one that produces the best results. Taking into account that a pedestrian
can be fitted in a square of about 0.5 m× 0.5 m, a resolution of 0.4 m is considered enough
to even identify a person in the road. Logically, if there is a thin object in the road, like
a road pin, this resolution can lead to the dissolution of the points in that cell and lead
to the non identification of the obstacle, but there has to be a trade-off between a very
thin resolution that results in worse outcome and a not so big cell that can still detect
small objects.

6.2.4 Influence of Car Velocity

One of the big concerns with this work was its robustness to the different car speeds.
To evaluate the performance of road detection with car velocity, the same road was

tested at different speeds, evaluating the system in about 200 m. Logically, the number of
frames evaluated varies according to the car velocity since lower speed results in more
time to travel the same distance and, consequently, more frames.

Figure 6.8 shows the path of about 230 m used to perform the evaluation of car speed
in the performance of the Gradient detector. Also, Figure 6.9 shows a camera image in
the moment of evaluation, from the camera installed on the AtlasCar2.

D. Rato Master Degree



6.Tests and Results 57

Figure 6.8: Satellite view of the path used to evaluate the influence of car speed in the
performance of algorithms. In red, the GPS path of the car, previously calculated. In
green, the drawn road limits used for evaluation.

Figure 6.9: Camera view of the path used to evaluate the influence of car speed in the
performance of algorithms.

Table 6.4 and the graphic in Figure 6.10 show the results of the algorithm analysis by
varying car speed from 20 to 60 km h−1.
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Velocity Precision Specificity NPV Sensitivity F-measure Accuracy

20.0 76.2 84.5 82.1 72.4 74.1 79.7
30.0 78.9 87.1 81.9 71.3 74.9 80.7
40.0 79.2 88.8 83.6 72.4 75.5 82.3
50.0 74.6 84.6 82.9 72.5 73.0 79.7
60.0 65.8 83.1 70.4 47.9 55.1 68.9

Table 6.4: Influence of car velocity (km h−1) in the statistical indicators for the density
gradient with 0.4 m/cell and no threshold (10 m to 30 m).
Note: Percentage figures.
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Figure 6.10: Influence of car velocity in statistical indicators for the density gradient with
0.4m/cell and no threshold (10 m to 30 m).

Through the analysis of Figure 6.10, it can be concluded that the performance
maintains more or less constant until 50 km h−1. After this value, the performance of the
algorithm starts decreasing but still above 50%.

Note that tests in the same road could not be performed at higher velocities due to
the speed limit in that zone.

6.2.5 Influence of Grid Threshold

When using the OpenCV toolbox to apply edge detection filters and 2D filters to Occupancy
Grids it is possible to apply a threshold when converting the converted image back to an
Occupancy Grid type of message. This can be interesting to eliminate some lower values
that correspond to road noise or noise obtained in the filtering. Logically, the threshold
value varies from filter to filter because some are much more susceptible to noise, like
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Kirsch, than others, like Gradient. For this reason, the study was performed individually
for each algorithm in order to optimize the performance of each one.

As mentioned before, as the image is of the type CV_8UC1 it means that the threshold
is within the range of 0 to 255.

This evaluation was also performed on the same road shown in Figures 6.3 and 6.2 by
repeating the process with different threshold values for each algorithm.

Gradient

Table 6.5 and the graphic in Figure 6.11 show the results of the Gradient filter by varying
the threshold from 0 to 175, due to the results being already conclusive without going
any further.

As expected, this bi-dimensional filter is little affected by noise; thus, increasing the
threshold value results in a loss of information, as seen in Figure 6.11. Also, the reason
for the increasing of Specificity with the threshold is due to the loss of information, also
provoking a decrease of FP, making equation 2.3 tend to 1. It is then concluded by the
analysis of the results that the algorithm performs better when no threshold is applied.

Threshold Precision Specificity NPV Sensitivity F-measure Accuracy

0.0 86.6 88.1 85.2 84.3 85.2 86.1
10.0 87.1 88.2 80.0 77.8 81.9 83.1
20.0 87.4 91.2 67.0 56.1 66.5 72.9
50.0 85.4 97.2 54.2 20.5 30.2 58.0
75.0 85.6 98.9 51.9 9.9 16.6 54.1
100.0 80.5 99.6 55.4 5.0 9.2 56.3
125.0 64.4 99.8 49.2 2.0 3.8 49.7
150.0 35.3 99.9 48.1 0.7 1.4 48.2
175.0 11.8 100.0 47.7 0.3 0.5 47.8

Table 6.5: Influence of algorithm threshold in Statistical indicators for the density gradient
with 0.4m/cell (10 m to 30 m). Note: Percentage figures.
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Figure 6.11: Influence of algorithm threshold in statistical indicators for the density
gradient with 0.4m/cell (10 m to 30 m).

Laplace

Table 6.6 and the graphic in Figure 6.12 show the results of the Laplace filter by varying
the threshold from 0 to 250.

As predicted, the Laplace filter is more susceptible to noise and therefore the use of a
threshold to remove some noise highly increases the performance of the algorithm.

Also, as concluded in the qualitative evaluation in Section 6.1, the initial meters are
the ones with more noise and worse detection due to the high accumulation of points
directly in front of the car explained in section 5.5. This means that the evaluated section
has less noise, and a low threshold is enough to achieve the best performance from these
filters. It is then concluded by the analysis of Figure 6.12 that this algorithm performs
the best with a threshold of 50.
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Threshold Precision Specificity NPV Sensitivity F-measure Accuracy

0.0 90.5 93.0 70.1 63.1 74.3 77.5
25.0 89.0 89.2 79.4 78.8 83.5 83.8
50.0 88.7 88.0 84.3 84.9 86.7 86.4
75.0 88.8 88.1 83.9 84.3 86.4 86.2
100.0 88.2 88.0 81.3 80.6 84.0 84.3
125.0 88.8 88.9 78.5 77.3 82.3 82.8
150.0 87.2 89.1 75.1 70.8 77.5 79.8
175.0 88.5 89.5 73.0 69.0 76.6 78.6
200.0 88.0 90.2 69.6 62.7 71.7 75.5
225.0 88.7 90.5 68.3 61.0 70.5 74.6
250.0 87.0 91.3 64.6 52.4 62.7 70.5

Table 6.6: Influence of algorithm threshold in Statistical indicators for the Laplace operator
with 0.4m/cell (10 m to 30 m).
Note: Percentage figures.
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Figure 6.12: Influence of algorithm threshold in Statistical indicators for the Laplace
operator with 0.4m/cell (10 m to 30 m).

Sobel

Table 6.7 and the graphic in Figure 6.13 show the results of the Sobel filter by varying
the threshold from 0 to 200. By the analysis of the graphic, this filter has the best result
when using a threshold of 25.
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Threshold Precision Specificity NPV Sensitivity F-measure Accuracy

0.0 90.4 92.5 70.1 64.3 75.1 77.7
25.0 88.0 88.0 79.9 79.6 83.5 83.7
50.0 87.5 88.5 73.8 70.4 77.4 79.0
75.0 86.8 90.6 66.7 56.4 66.9 72.8
100.0 85.4 91.9 62.1 45.5 56.7 67.6
125.0 83.3 93.5 58.1 34.9 45.5 62.9
150.0 83.3 95.3 55.2 27.1 37.1 59.6
175.0 86.1 97.3 61.8 23.0 33.7 65.3
200.0 86.1 98.5 50.8 12.3 19.3 53.4

Table 6.7: Influence of algorithm threshold in Statistical indicators for the Sobel operator
with 0.4m/cell (10 m to 30 m). Note: Percentage figures.
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Figure 6.13: Influence of algorithm threshold in Statistical indicators for the Sobel operator
with 0.4m/cell (10 m to 30 m).

Prewitt

Table 6.8 and the graphic in Figure 6.14 show the results of the Prewitt filter by varying
the threshold from 0 to 175.

Very similar to the Gradient filters, the Prewitt filter also performs better with no
threshold. Also in Section 6.1 it was concluded that these two filters, visually, were the
ones that looked more faded and less susceptible to noise. The results present in the
graphic confirm the visual analysis.

Again the Specificity increases with the decrease of performance for the reasons already
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mentioned.

Threshold Precision Specificity NPV Sensitivity F-measure Accuracy

0.0 90.6 91.6 76.0 73.7 81.2 82.2
25.0 87.9 88.5 76.5 74.2 80.1 81.1
50.0 86.7 91.2 65.0 52.7 63.8 71.1
75.0 84.8 93.4 58.0 35.7 46.9 63.1
100.0 82.7 95.4 54.5 25.6 35.6 58.7
125.0 81.8 96.7 52.2 18.6 27.4 55.6
150.0 79.8 98.8 50.0 10.5 16.9 52.4
175.0 47.8 99.4 48.9 6.2 10.5 50.3

Table 6.8: Influence of algorithm threshold in Statistical indicators for the Prewitt operator
with 0.4m/cell (10 m to 30 m). Note: Percentage figures.
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Figure 6.14: Influence of algorithm threshold in Statistical indicators for the Prewitt
operator with 0.4m/cell (10 m to 30 m).

Canny

Table 6.9 and the graphic in Figure 6.15 show the results of the Canny filter by varying
the threshold from 0 to 200.

As mentioned before, this filter is the one with the worst, results making the algorithm
less suitable for this type of application, mainly due to distorting the results by applying
a Gaussian and making operations that changes the true data obtained from the LIDAR.
Nevertheless, this algorithm also performs better with when no is threshold applied.
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Threshold Precision Specificity NPV Sensitivity F-measure Accuracy

0.0 87.6 91.4 65.3 53.2 64.0 71.4
25.0 87.1 91.5 64.0 51.6 63.2 70.6
50.0 87.7 93.2 60.5 44.1 57.3 67.3
75.0 87.9 94.1 58.7 39.0 52.2 65.0
100.0 87.6 94.3 57.7 35.5 47.7 63.3
125.0 87.5 94.8 56.3 31.1 42.0 61.2
150.0 84.6 96.5 52.6 20.4 29.8 56.4
175.0 70.7 98.5 49.6 9.6 16.0 51.6
200.0 58.3 99.6 48.0 3.1 5.7 48.7

Table 6.9: Influence of algorithm threshold in Statistical indicators for the Canny operator
with 0.4m/cell (10 m to 30 m). Note: Percentage figures.
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Figure 6.15: Influence of algorithm threshold in Statistical indicators for the Canny
operator with 0.4m/cell (10 m to 30 m).

Kirsch

Table 6.10 and the graphic in Figure 6.16 show the results of the Kirsch filter by varying
the threshold from 0 to 200.

Very similar to Laplace, this filter is also very susceptible to noise and presents a very
similar response to the variation of the threshold, as seen in the graphic.

Also like Laplace it also has the best performance at a threshold of 50.
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Threshold Precision Specificity NPV Sensitivity F-measure Accuracy

0.0 89.2 90.9 71.6 67.5 76.8 78.6
25.0 87.7 87.1 82.5 83.0 85.2 85.0
50.0 87.6 86.4 84.9 85.8 86.6 86.2
75.0 87.2 86.3 82.8 83.3 85.1 84.8
100.0 86.9 86.7 79.2 78.2 82.0 82.4
125.0 86.5 87.2 75.7 72.9 78.5 79.9
150.0 88.0 91.9 66.2 55.0 66.1 72.6
175.0 87.9 94.0 60.9 42.8 55.2 67.2
200.0 87.6 95.8 56.9 32.2 44.3 62.4
225.0 87.5 96.9 54.3 24.9 36.1 59.1

Table 6.10: Influence of algorithm threshold in Statistical indicators for the Kirsch
operator with 0.4m/cell (10 m to 30 m).Note: Percentage figures.
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Figure 6.16: Influence of algorithm threshold in Statistical indicators for the Kirsch
operator with 0.4m/cell (10 m to 30 m).

Summary

In conclusion, Table 6.11 presents the most adequate threshold for each algorithm. It is
also very interesting to confirm that the visual analysis is done in section 6.1 is almost
always confirmed by the subsequent calculations.
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Filter Laplace Gradient Sobel Prewitt Kirsch Canny

Threshold (0-255) 50 0 25 25 50 0

Table 6.11: List of best threshold for the several algorithms.

6.2.6 Performance with improved algorithms

To conclude, Table 6.12 shows the results of all the algorithms with improved thresholds,
car speed, and cell resolution.

Filter Precision Specificity NPV Sensitivity F-measure Accuracy

Laplace 88.9 88.1 84.8 85.6 87.1 86.8
Gradient 89.4 89.0 83.4 83.9 86.5 86.3
Sobel 87.1 87.6 80.4 79.6 83.0 83.5
Prewitt 87.6 88.5 77.2 74.4 80.0 81.4
Kirsch 86.6 86.0 84.8 85.3 85.9 85.7
Canny 87.3 91.1 67.5 56.0 66.3 73.3

Table 6.12: Result of the performance of the algorithms with the improved parameters.

By analyzing this table, it can be concluded that Gradient and the Laplace, very close
to Kirsch filter produce the best results. The Canny edge detector, for the reasons already
mentioned, is not the most suitable for this application and the Sobel and Prewitt filters,
very similar to each other, although having good results fall short of the best algorithms.

Overall the work showed better than expected results with good road detection and
more robustness than the previous solution.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Since the beginning, this dissertation proposed to find an effective way to correctly identify
road limits and the navigable space of the road. The thesis to study was that the density
of the accumulated cloud, obtained from car movement with an 85º range 3D LIDAR, is
a new and innovative methodology to perform road detection. Unlike most of the work
done in this area, using 360º Velodyne LIDARs, seeing the road at ground level offers a
completely different perspective, possibly allowing to make real-time driving decisions
taking into account the road limits identified.

To solve the problem, the approach used was to transform accumulated point clouds
in a density occupancy grid and, originally to calculate a two-dimensional gradient and
subsequently to apply edge detection algorithm to find density patterns that define
obstacles. One of the biggest innovations, when compared with previous work done in the
AtlasCar2, is the ability to detect both positive and negative obstacles due to considering
density increases and decreases.

When it comes to the edge detection algorithms used, tests were made to quantify
the performance of each one and evaluate the influence of several factors in the global
performance of the system. The conclusions taken were that:

• The Simple Gradient produced the best results detecting the navigable space in all
situations tested.

• The Kirsch and Laplace edge detectors also proved to produce good detection
results.

• The algorithm threshold that optimizes detection is different from filter to filter due
to the characteristics of the same and noise sensitivity.

• The algorithms have a stable performance up to 50 km h−1 and from that value the
performance, although acceptable, begins to decrease.

• The cell resolution that optimizes the detection of the navigable space is 0.4 m/cell.

Briefly, the main contributions of this work were:

• The use gradient as a tool to detect hard limits of the road in a moving car;
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• Development of a method able to detect different types of curbs;

• Development of a tool to evaluate algorithms performance;

• Test and prove the efficacy of the method in real time on board of the AtlasCar2 ;

• Reduce computational time of point cloud accumulation.

Additionally, the work developed in this dissertation originated an article submitted in
the Fourth Iberian Robotics Conference named "Detection of Road Limits using Gradients
of the Accumulated Point Cloud Density".

Broadly, the initially defined goals have been met. This work led to an effective
solution in road detection that works in low and inverted curbs, detecting positive and
negative obstacles. A metric to quantitatively evaluate the detection was developed
and implemented and several tests in different situations were conducted on the real
environment in the AtlasCar2.

Although this system alone may not be enough to provide data for a navigation system,
when integrated with the other sensors in the AtlasCar2, it provides essential navigational
information of hard limits. A good solution would be to complement the detection with
lane perception (soft limits) to obtain a more complete and safer occupancy grid.

The work developed along the semesters was described week by week in https://danielar
atodissertation.home.blog/ and the correspondent code can be view in https://github.com/
danifpdra/road_detection.

7.2 Future Work

This work leaves open a wide range of possibilities. On the one hand, road detection for
navigational purposes can be largely improved by combining the work already developed in
lane detection using cameras by T. Almeida in [2] and creating a multi-sensorial algorithm
with the possibility to create an occupancy grid with different levels of probability
according to the detected features (lane less serious, hard limits more serious, etc.).
Fusing the results of several edge detection algorithms may also be interesting to obtain
more complete and robust information. Also to improve the detection, finding a solution
to the behavior of the accumulated point cloud in roundabouts, where the constant change
of speed doesn’t allow to properly define the features in the road, and temporary obstacles,
that are delayed due to the accumulation buffer speed, would make the algorithm more
robust and wide-ranging.

To improve the hardware in the car, adding a second LIDAR to cover a bigger range of
road and setting the sensors to asynchronous times for more reliability at higher velocities.

On the other hand, concerning the evaluation methodology developed, the method
could be extended to contemplate not only the limits of the road but also lanes and other
features. It could also be upgraded to become more comprehensive by including other
road situations like curves, roundabouts, and other sharp curves.
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Appendix A

Instructions to Install, Run and
Manage Packages

A.1 Prerequisites and Required Installations

To run the developed packages it is necessary to install ROS Melodic with:

sudo apt install ros-melodic-desktop-full

Then, follow the steps in http://wiki.ros.org/melodic/Installation/Ubuntu to con-
figured a catkin workspace.

To install PCL, please read http://www.pointclouds.org/downloads/linux.html.
Install OpenCV by running:

[compiler] sudo apt-get install build-essential
[required] sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev

libavformat-dev libswscale-dev
[optional] sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev

libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

Instal Eigen by running:

sudo apt-get install libeigen3-dev

It is necessary to install the following ROS packages:

• novatel-gps-driver
• pcl-ros
• grid-map*
• driver-base
• swri*

To install a package, use:
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sudo apt install ros-melodic-$PACKAGE_NAME$

The last step is to clone the developed packages into the source folder within the
catkin workspace with:

git clone https://github.com/danifpdra/road_detection

A.2 Compilation

To compile the packages, inside catkin_ws (cd catkin_ws), first do:

catkin_make –pkg driver_base

to generate the necessary messages to run the program. Then do:

catkin_make

and the packages should be ready to run.

A.3 AtlasCar2 Setup

To launch all sensors:

roslaunch atlas2_bringup drivers.launch

Make sure that the novatel.launch file, included in the drivers.launch file has the
correct port names correspondent to the two Novatel ports.

To launch the inclinometry module:

rosrun rosserial_python serial_node.py /dev/$PORT_NAME$

To visualize the data and edge detection algorithms in real time run:

roslaunch negative_obstacles negative_obstacles.launch

A.4 Create and Manage rosbags

To record a new rosbag:

rosbag record /ld_rms/scan0 /ld_rms/scan1 /ld_rms/scan2 /ld_rms/scan3 /lms151_D_scan
/lms151_E_scan /top_camera/image_rect_color /fix /inspva /DadosInclin /gps

To play a rosbag:
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rosbag play $BAG_NAME$ –clock –topic /DadosInclin /ld_rms/scan0 /ld_rms/scan1
/ld_rms/scan2 /ld_rms/scan3 /imu /gps /fix /inspva /top_right_camera/image_rect_color

For more options please read http://wiki.ros.org/rosbag.

A.4.1 Run the program with rosbags

First, in the negative_obstacles.launch, inside the negative_obstacles packages, un-
comment the <param name="use_sim_time" value="true"/> line to use the simulated
time. Then run the negative_obstacles.launch with the roslaunch command and
then play the rosbag with the described command.
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